diy Physics Blog

  • Book
    • Book Contents
    • Adopt the Textbook
    • Back Cover
    • Instructor’s Guide
    • Software
    • Book Errata
  • About Us
  • Contact Us
  • Terms of Use
  • Privacy Policy

Category Archives: Instrumentation

Fair Sampling Loophole Closed for Test of Violation of Bell’s Inequality

Posted on April 25, 2013 by David Prutchi Posted in Bell's Inequality Test, Chapter 8 - Entanglement, Single-Photon Counting Modules (SPCMs)

 

Loophole-free Bell's Inequality Violation David Prutchi PhD www.diyPhysics.com

From “Loophole-free Einstein–Podolsky–Rosen experiment via quantum steering”, New Journal of Physics, Volume 14, May 2012

A very interesting article by Bernhard Wittmann, Sven Ramelow, Fabian Steinlechner, Nathan K Langford, Nicolas Brunner, Howard M Wiseman, Rupert Ursin,and Anton Zeilinger, entitled “Loophole-free Einstein–Podolsky–Rosen experiment via quantum steering” appeared in the Nature’s New Journal of Physics, Volume 14, May 2012.

This paper describes a Bell’s Inequality Violation experiment in which the “fair sampling” loophole has been closed.  This loophole posits the possibility that classical – rather than quantum – effects could be responsible for measured correlations between entangled pairs of photons in a Bell’s Inequality Violation experiment.  The paper’s abstract reads:

“Tests of the predictions of quantum mechanics for entangled systems have provided increasing evidence against local realistic theories. However, there remains the crucial challenge of simultaneously closing all major loopholes—the locality, freedom-of-choice and detection loopholes—in a single experiment. An important sub-class of local realistic theories can be tested with the concept of ‘steering’. The term ‘steering’ was introduced by Schrödinger in 1935 for the fact that entanglement would seem to allow an experimenter to remotely steer the state of a distant system as in the Einstein–Podolsky–Rosen (EPR) argument. Einstein called this ‘spooky action at a distance’. EPR-steering has recently been rigorously formulated as a quantum information task opening it up to new experimental tests. Here, we present the first loophole-free demonstration of EPR-steering by violating three-setting quadratic steering inequality, tested with polarization-entangled photons shared between two distant laboratories. Our experiment demonstrates this effect while simultaneously closing all loopholes: both the locality loophole and a specific form of the freedom-of-choice loophole are closed by having a large separation of the parties and using fast quantum random number generators, and the fair-sampling loophole is closed by having high overall detection efficiency. Thereby, we exclude—for the first time loophole-free—an important class of local realistic theories considered by EPR. Besides its foundational importance, loophole-free steering also allows the distribution of quantum entanglement secure event in the presence of an untrusted party.”

Continue reading→

Using Surplus Photonis XP2422/SN PMTs in Scintillation Probes

Posted on April 8, 2013 by David Prutchi Posted in Chapter 2 - Light as Particles, Chapter 5 - Wave-Particle Duality, Ionizing Radiation Detection, MCA/PHA, Photomultipliers, Radio-Isotope Identification, Scintillation Detector

XP2422/SN PMT Photomultiplier David Prutchi PhD

We prepared a short note on how to build a dynode voltage divider network for inexpensive surplus XP2422/SN photomultiplier tubes.  The XP2422/SN PMT is especially suited for gamma-ray spectral analysis when coupled to a NaI(Tl) scintillation crystal because of its high pulse-height resolution (PHR).  The XP2422/SN is available from Sphere Research in Canada.

Continue reading→

Schematics for Fast Pulse Amplifier for Macroscopic Entanglement Detection

Posted on April 7, 2013 by David Prutchi Posted in Chapter 8 - Entanglement, Entanglement, Photon/Coincidence Counter, Single-Photon Counting Modules (SPCMs)

Fast pulse amplifier for macro entanglement detectionA recent paper entitled “Displacing entanglement back and forth between the micro and macro domains” discusses the experimental possibility of displacing quantum entanglement into the domain where it involves two macroscopically distinct states, i.e. two states characterized by a large enough number of photons.  Specifically, the authors describe the process by which they start with two entangled spatially separated optical modes at the single photon level and subsequently displace one of these modes up to almost a thousand photons.

With so many photons, it would be possible, at least in principle, to see entangled photon pulses with our eyes.  This would also make it possible to perform entanglement experiments with linear coarse-grain detectors (NOT single-photon detectors).

Mathieu Stephan, a high speed electronics engineer at the Swiss quantum information systems company id Quantique SA (and prolific hardware hacker) designed the very fast pulse amplifiers needed to acquire signals from avalanche photodiodes for this experiment.  He has posted a thorough description of his design on his blog: http://www.limpkin.fr.

Continue reading→

Construction of a d.i.y. Thermoelectrically-Cooled Photomultiplier Tube (PMT) Housing

Posted on March 31, 2013 by David Prutchi Posted in Photomultipliers 7 Comments

diy thermoelectrically cooled PMT housing David Prutchi PhD www.diyPhysics.com

The photomultiplier tubes (PMT) is the workhorse detector in particle physics and many other fields that require detection of light at extremely low levels.  However, the long-wavelength response of PMTs is not only low because of low quantum efficiency, but also because thermionic emission at room temperature causes swamps low-level signals with noise.

Reducing dark counts is especially important in photon-counting applications, especially when attempting to detect photons in the near-infrared. For example, the dark count of many PMTs rated for a wavelength range from 400 to 1200 nm, is in the hundred of thousands of counts when not cooled—making it virtually useless for detecting almost anything but the strongest signal. When cooled to -20 °C, the dark count is reduced to just a few tens counts. As such, in general, the use of PMTs that detect above 600 nm almost mandate a cooled housing.

We constructed a thermoelectrically-cooled housing to experiment with cooling a standard 2” face-on PMT. Although appropriate PMT noise reduction was achieved (one order of magnitude), the thermal efficiency of the do-it-yourself housing design was low, so lessons learned from this build will be used in a second-generation cooled housing.

Continue reading→

diy Scintillation Probe for Ludlum Ratemeters Using Surplus XP3312/SQ PMT

Posted on March 22, 2013 by David Prutchi Posted in CDV700 Pro Geiger-Müller Counter, Chapter 3 - Atoms and Radioactvity, Ionizing Radiation Detection, Photomultipliers, Scintillation Detector

 

Low-Cost Scintillation Probe Based on a Surplus XP3312 PMT for Ludlum Ratemeters www.diyPhysics.com prutchi

Ludlum general-purpose ratemeters are professional-grade instruments that are available on the secondary market at affordable prices.  They are compatible with a wide variety of probes, making them a great choice for educators, surveyors, and advanced amateur users.  However, probes for Ludlum ratemeters are often as expensive as the meter instrument itself, making it worthwhile to build comparable versions from surplus components.

Continue reading→

80 µCi Americium-241 Sources Inside Old Pyrotronics F3/5A Smoke Detectors

Posted on January 20, 2013 by David Prutchi Posted in Chapter 3 - Atoms and Radioactvity, Radioisotopes

Pyrotronics F3/5A 80uCi Am-241 Source

These are pictures of the Americium-241 sources inside some old Pyrotronics F3/5A smoke detectors that were being decommissioned.  The activity of the Am-241 sources at the time of manufacture (1970s) totaled  80 µCi, so they should still have some ~70 µCi left in them.

80uCi Am-241 Label on Pyrotronics F3/5A smoke detector

The Pyrotronics F3/5A smoke detectors were manufactured in the early 1970s. The radioactive sources consist of americium oxide mixed with gold powder and formed into a small billet. This billet was then placed between a sheet of silver and a sheet of gold and rolled into a foil under high heat and pressure.  Americium-241 decays primarily by alpha particle emission to neptunium-237, along with low energy gamma radiation, with a 59.5 keV gamma emission being most prominent.

Continue reading→

A Low-Cost, Super-Sensitive Paint Can Scintillation Probe for the Prutchi CDV700-Pro

Posted on January 12, 2013 by David Prutchi Posted in CDV700 Pro Geiger-Müller Counter, Chapter 3 - Atoms and Radioactvity, Scintillation Detector 11 Comments

 

Shanni Prutchi Paint Can Scintillator PMT www.diyphysics.com

We just finished constructing a low-cost, yet highly sensitive gamma-ray scintillation probe for our CDV700-Pro counter.  The probe is based on a Philips XP5312/SN photomultiplier tube (that is available from Sphere Research) and a piece of scintillation plastic.  The probe yields a background count of approximately 1,000 counts/minute (cpm) in our lab, and 7,400 cpm from a 137Cs 6.7 µCi exempt source at a distance of 30 cm.  The probe’s sensitivity, portability and rugged construction make it an ideal choice for surveying.

Continue reading→

New Book by Prof. Mark Beck – Great Complement to Our diy Quantum Physics Book!

Posted on September 27, 2012 by David Prutchi Posted in Chapter 8 - Entanglement, Entangled-Photon Source, Single-Photon Counting Modules (SPCMs), Single-Photon Experiments, Uncategorized

Quantum Mechanics Theory and Experiment by Mark Beck, www.diyPhysics.comProf. Mark Beck from the Dept. of Physics at Whitman College recently published an excellent book titled “Quantum Mechanics: Theory and Experiment.”  It is written for an advanced undergraduate/graduate quantum mechanics class.  This book presents the theory in its full formalism (with thorough, high-level math), as well as describes five laboratory experiments that explore the use of entangled photons in the undergraduate lab.

Prof. Beck’s laboratory experiments use the same type of system as we describe in Chapter 8 of Exploring Quantum Physics Through Hands-On Projects, so if you are up to the math, we heartily recommend this book to continue your exploration with your entangled-photon system.

Continue reading→

Using the $79 SainSmart DSO201 Pocket Oscilloscope and GammaGrapher with the PMT/Scintillation Probe

Posted on September 21, 2012 by David Prutchi Posted in Chapter 2 - Light as Particles, Chapter 3 - Atoms and Radioactvity, Chapter 5 - Wave-Particle Duality, Compton Scattering, MCA/PHA, Photomultipliers, PMT/Scintillation Processor, Scintillation Detector, Single-Photon Experiments 3 Comments

Connects directly to PMT probe shown in the book’s Figure 30 with no need for PMT amplifier!

 

Freeware Gamma Grapher MCA with diy PMT Scintillation Probe by David and Shanni Prutchi diyPhysics.com

The nice guys at the Yahoo GammaSpectrometry Group developed multichannel analyzer software for the $79 SainSmart DSO201 Pocket-Sized Digital Oscilloscope.  The upload of the MCA software to the oscilloscope is really easy (via USB), and it allows the PMT probe shown in the book’s Figure 30 to be connected directly to the oscilloscope’s input with no need for a PMT amplifier!

Continue reading→

A Low-Cost X-Band Generator for Microwave Optics Experiments

Posted on September 20, 2012 by David Prutchi Posted in Chapter 1 - Light as a Wave, Chapter 6 - The Uncertainty Principle, Chapter 7 - Schrödinger's Wave Equation, Doppler Effect, Gunnplexer Transceiver, Quantum Tunneling

Parallax X-Band Microwave Transmitter for diy Quantum Tunneling and Microwave Optics Experiments

Gunnplexers are becoming scarce in the surplus market, but X-band motion detection is very much alive.  X-band detection modules are available for OEM applications, and fortunatelly, Parallax has a unit based on this module available for $34.99.

Continue reading→

Two SPCMs on eBay at $400 Each (No Connection To Seller)

Posted on May 9, 2012 by David Prutchi Posted in Chapter 8 - Entanglement, Entanglement, Single-Photon Counting Modules (SPCMs), Single-Photon Experiments

SPCMs for sale on eBayToday I found two Perkin Elmer SPCM-AQE-13-FC SPCMs for sale on eBay at $400 each.  eBay auction numbers are 280877451350 and 280877453169.  I am passing along this information in case that blog readers may be interested.  I have no connection whatsoever to seller.

Posted to www.prutchi.com: diy High-Power UV/IR/Visible Flashlight

Posted on April 27, 2012 by David Prutchi Posted in Ultraviolet Illuminators
diy High-power UV/IR/Visible flashlight by David Prutchi PhD www.diyPhysics.com
I just posted detailed instructions for the construction of a high-power (10W) flashlight that has interchangeable LED heads to produce UV, IR, or visible illumination.
The URL is http://www.prutchi.com/2012/04/27/d-i-y-high-power-swappable-head-uvirvisible-led-flashlight-with-intensity-control/#more-1091

New Isotope/Geiger Tube Holder at Images Scientific

Posted on April 22, 2012 by David Prutchi Posted in Attenuation of Radiation, CDV700 Pro Geiger-Müller Counter, Chapter 3 - Atoms and Radioactvity, Ionizing Radiation Detection, β-Particle Magnetic Deflection
Radioisotope/GM tube calibrated sled

Image Credit: Images Scientific Corporation

Images Scientific Corporation just announced a new Geiger counter wand base provides a stable platform to hold the Geiger counter wand for experiments. The physical dimensions of the holder are 2″ wide by 12″ long. The length of the sled has markings in both metric and imperial.

The sled isotope holder provides a stable and moveable platform for radioactive isotopes 1″ diameter discs. The sled isotope holder is available in two sizes:  One that holds 1/8″ thick discs and the other to hold 1/4″ thick discs.

When used in conjunction with the Sled isotope holder a number of nuclear experiments may be performed such as the Inverse Square Law of radiation, half life, shielding effects, etc.

Continue reading→

Perkin Elmer C30902E SPADs on eBay for $91 (Unrelated to Authors)

Posted on April 18, 2012 by David Prutchi Posted in Chapter 8 - Entanglement, Entanglement, Single-Photon Counting Modules (SPCMs), Single-Photon Experiments 1 Comment

Perkin Elmer Excelitas single photon avalanche photodiodes on eBay  www.diyPhysics.comSomeone (I don’t know the seller) is selling brand new Perkin Elmer C30902E Silicon Avalanche Photodiodes on eBay.  Auction number:  200747161278.

These are NOT chilled by a thermoelectric cooler, so their internal noise may be too large for experiments with entangled photons unless you rig some sort of external Peltier element to keep them chilled.  However, if you are developing a SPCM, using $91 SPADs during debugging is a lot better than frying $1,000 TE-cooled SPADs.

Continue reading→

Telling Apart 365 nm from 395 nm Ultraviolet LEDs and Flashlights

Posted on April 12, 2012 by David Prutchi Posted in Ultraviolet Illuminators 6 Comments

Comparison of fluorescence produced on Canadian bills by 365nm and 390nm UV LEDs. David Prutchi, Ph.D.Today I received an UltraFire WF-502B UV flashlight advertised as emitting at 365 nm.  I was wondering how to tell if it really does, especially since vendors commonly list it as emitting 365-400 nm.

Well, I was in Canada last week, and had $25 Canadian left over in my wallet, so I tried this flashlight and compared it to the fluorescence produced by an Inova X5MT-UVT 400 nm flashlight.  Much to my surprise, the 365 nm UltraFire caused fluorescence that did not show up at all under the Inova 395 nm flashlight. Continue reading→

Pages

  • Book
    • Book Contents
    • Adopt the Textbook
    • Back Cover
    • Instructor’s Guide
    • Software
    • Book Errata
  • About Us
  • Contact Us
  • Terms of Use
  • Privacy Policy

Archives

  • April 2018
  • March 2018
  • November 2016
  • October 2016
  • September 2016
  • July 2016
  • March 2016
  • December 2015
  • November 2015
  • October 2015
  • September 2015
  • August 2015
  • July 2015
  • February 2014
  • December 2013
  • July 2013
  • May 2013
  • April 2013
  • March 2013
  • February 2013
  • January 2013
  • December 2012
  • October 2012
  • September 2012
  • August 2012
  • June 2012
  • May 2012
  • April 2012
  • March 2012
  • February 2012
  • January 2012
  • December 2011

Categories

  • Administrative (7)
  • Book Chapters (60)
    • Chapter 1 – Light as a Wave (2)
    • Chapter 2 – Light as Particles (9)
    • Chapter 3 – Atoms and Radioactvity (27)
    • Chapter 4 – The Priciple of Quantum Physics (3)
    • Chapter 5 – Wave-Particle Duality (13)
    • Chapter 6 – The Uncertainty Principle (2)
    • Chapter 7 – Schrödinger's Wave Equation (7)
    • Chapter 8 – Entanglement (18)
  • Experiments (57)
    • Attenuation of Radiation (2)
    • Bell's Inequality Test (8)
    • Compton Scattering (8)
    • Doppler Effect (2)
    • e/m Measurement (3)
    • Emission Spectrometry (2)
    • Entanglement (12)
    • Glow Discharge (1)
    • Ionizing Radiation Detection (18)
    • Maltese Cross CRT (1)
    • Plasma Physics (1)
    • QKD (3)
    • Quantum Dots (1)
    • Quantum Random Number Generation (3)
    • Quantum Tunneling (2)
    • Radio-Isotope Identification (7)
    • Relativistic Time Dilation (1)
    • Rutherford Alpha-Particle Scattering (1)
    • Single-Electron Experiments (1)
    • Single-Photon Experiments (22)
    • Single-Slit Diffraction (1)
    • Two-Slit Interference (4)
    • β-Particle Magnetic Deflection (2)
  • Instrumentation (76)
    • CDV700 Pro Geiger-Müller Counter (7)
    • Electron-Beam Tube (4)
    • Entangled-Photon Source (6)
    • Gunnplexer Transceiver (2)
    • High-Voltage Power Supply (9)
    • Lasers (2)
    • Mach-Zehnder Interferometer (1)
    • Marx Generators (3)
    • MCA/PHA (10)
    • Photomultipliers (14)
    • Photon/Coincidence Counter (4)
    • PMT/Scintillation Processor (7)
    • Polarimetric Imaging (4)
    • Polymeric Radiation Detector (1)
    • Precision Clocks and Timers (3)
      • Atomic Clock (2)
      • GPS-Disciplined (1)
    • Radioisotopes (1)
    • Scintillation Detector (14)
    • Single-Photon Counting Modules (SPCMs) (12)
    • Single-Photon Imaging (3)
    • Spectrometer (1)
    • Thermal Camera (1)
    • Ultraviolet Illuminators (3)
    • Vacuum System (1)
  • Medium Wave Infrared Imaging (1)
  • Nuclear Magnetic Resonance NMR (1)
  • Physics Humor (9)
  • Ultraviolet Imaging (1)
  • Uncategorized (25)

WordPress

  • Log in
  • WordPress

Subscribe

  • Entries (RSS)
  • Comments (RSS)
  • Prev
  • 1
  • 2
  • 3
  • 4
  • …
  • 6
  • Next

Pages

  • Book
    • Book Contents
    • Adopt the Textbook
    • Back Cover
    • Instructor’s Guide
    • Software
    • Book Errata
  • About Us
  • Contact Us
  • Terms of Use
  • Privacy Policy

Archives

  • April 2018
  • March 2018
  • November 2016
  • October 2016
  • September 2016
  • July 2016
  • March 2016
  • December 2015
  • November 2015
  • October 2015
  • September 2015
  • August 2015
  • July 2015
  • February 2014
  • December 2013
  • July 2013
  • May 2013
  • April 2013
  • March 2013
  • February 2013
  • January 2013
  • December 2012
  • October 2012
  • September 2012
  • August 2012
  • June 2012
  • May 2012
  • April 2012
  • March 2012
  • February 2012
  • January 2012
  • December 2011

Categories

  • Administrative (7)
  • Book Chapters (60)
    • Chapter 1 – Light as a Wave (2)
    • Chapter 2 – Light as Particles (9)
    • Chapter 3 – Atoms and Radioactvity (27)
    • Chapter 4 – The Priciple of Quantum Physics (3)
    • Chapter 5 – Wave-Particle Duality (13)
    • Chapter 6 – The Uncertainty Principle (2)
    • Chapter 7 – Schrödinger's Wave Equation (7)
    • Chapter 8 – Entanglement (18)
  • Experiments (57)
    • Attenuation of Radiation (2)
    • Bell's Inequality Test (8)
    • Compton Scattering (8)
    • Doppler Effect (2)
    • e/m Measurement (3)
    • Emission Spectrometry (2)
    • Entanglement (12)
    • Glow Discharge (1)
    • Ionizing Radiation Detection (18)
    • Maltese Cross CRT (1)
    • Plasma Physics (1)
    • QKD (3)
    • Quantum Dots (1)
    • Quantum Random Number Generation (3)
    • Quantum Tunneling (2)
    • Radio-Isotope Identification (7)
    • Relativistic Time Dilation (1)
    • Rutherford Alpha-Particle Scattering (1)
    • Single-Electron Experiments (1)
    • Single-Photon Experiments (22)
    • Single-Slit Diffraction (1)
    • Two-Slit Interference (4)
    • β-Particle Magnetic Deflection (2)
  • Instrumentation (76)
    • CDV700 Pro Geiger-Müller Counter (7)
    • Electron-Beam Tube (4)
    • Entangled-Photon Source (6)
    • Gunnplexer Transceiver (2)
    • High-Voltage Power Supply (9)
    • Lasers (2)
    • Mach-Zehnder Interferometer (1)
    • Marx Generators (3)
    • MCA/PHA (10)
    • Photomultipliers (14)
    • Photon/Coincidence Counter (4)
    • PMT/Scintillation Processor (7)
    • Polarimetric Imaging (4)
    • Polymeric Radiation Detector (1)
    • Precision Clocks and Timers (3)
      • Atomic Clock (2)
      • GPS-Disciplined (1)
    • Radioisotopes (1)
    • Scintillation Detector (14)
    • Single-Photon Counting Modules (SPCMs) (12)
    • Single-Photon Imaging (3)
    • Spectrometer (1)
    • Thermal Camera (1)
    • Ultraviolet Illuminators (3)
    • Vacuum System (1)
  • Medium Wave Infrared Imaging (1)
  • Nuclear Magnetic Resonance NMR (1)
  • Physics Humor (9)
  • Ultraviolet Imaging (1)
  • Uncategorized (25)

WordPress

  • Log in
  • WordPress
© diy Physics Blog