diy Physics Blog

  • Book
    • Book Contents
    • Adopt the Textbook
    • Back Cover
    • Instructor’s Guide
    • Software
    • Book Errata
  • About Us
  • Contact Us
  • Terms of Use
  • Privacy Policy

d.i.y. 250 kV High Voltage DC Power Supply with Neat Trick for Switching Polarity

Posted on February 9, 2012 by David Prutchi Posted in Chapter 3 - Atoms and Radioactvity, High-Voltage Power Supply

d.i.y. 300 kV DC high voltage power supply by David and Shanni Prutchi

High voltage DC power supplies are used by science enthusiasts for powering electron tubes and x-ray tubes, charging high-voltage capacitors, powering electrostatic “levitators”, etc.  Many of these power supplies use a flyback transformer to produce high voltage at high frequency (AC), followed by a “Cockroft-Walton Multiplier” to rectify and dramatically increase the voltage.

The Cockroft-Walton multiplier uses a cascaded series of diodes and capacitors to generate a high voltage DC potential from an AC input through a circuit topology that uses diodes to charge capacitors in parallel and discharge them in series.  The output polarity of the Cockroft-Walton multiplier depends on the way in which its diodes are oriented, so the output polarity (referenced to ground) of a high-voltage DC power supply is usually set during the design.

However, since some of our physics experiments require one or the other polarity, we build our Cockroft-Walton multipliers with an extra capacitor so that we can make our HV power supplies output either positive or negative high voltage referenced to ground.  The schematic for our “reversible” Cockroft-Walton is shown in the following picture (click to enlarge): Schematic of Dual-Polarity High-Voltage Cockroft-Walton Multiplier by David and Shanni Prutchi

If the high-voltage AC output of the flyback is connected to point “A” of the voltage multiplier, and point “B” is connected to ground, then the output at point “D” will be positive. If however point “C” receives the high-voltage AC, and point “D” is connected to ground, then point “B” will be negative.

As shown in the following pictures, the multiplier should be built on a piece of clean perfboard:

Circuit board of Dual-Polarity High-Voltage Cockroft-Walton Multiplier by David and Shanni Prutchi

Circuit board of Dual-Polarity High-Voltage Cockroft-Walton Multiplier by David and Shanni Prutchi

The circuit board is then suspended by nylon spacers inside a plastic enclosure (of the type used to store food):

Dual-Polarity High-Voltage Cockroft-Walton Multiplier inside plastic enclosure by David and Shanni Prutchi

Banana connectors are then installed on the plastic container and wired directly to points A, B, C, and D.  The connectors must be sealed very well using silicone RTV:

Banana connectors in Dual-Polarity High-Voltage Cockroft-Walton Multiplier by David and Shanni Prutchi

The connectors are then labeled as follows:

Labeling of Dual-Polarity High-Voltage Cockroft-Walton Multiplier by David and Shanni Prutchi

Labeling of Dual-Polarity High-Voltage Cockroft-Walton Multiplier by David and Shanni Prutchi

The plastic container should then be filled with pure mineral oil (may be purchased at a pharmacy) to completely submerge the multiplier circuit assembly, which prevents high voltage breakdown between components:

Dual-Polarity High-Voltage Cockroft-Walton Multiplier by David and Shanni Prutchi

You can use any high-voltage AC power supply to drive the multiplier. Our favorite circuit is the following DC-to-AC inverter (click diagram to enlarge):

High voltage AC driver for 250 kV DC power supply by David and Shanni Prutchi

In this AC power supply, a push-pull oscillator drives a TV flyback transformer from an old color TV (a flyback without embedded tripler). The well-known hack is that the original primary of the flyback is not used. Instead, new primaries are made by winding two sets of four turns each of insulated #18 wire around the exposed core of the flyback transformer. Feedback for the oscillator is obtained through an additional coil of 4 turns of #24 wire wound around the core:

High voltage flyback hack for 250 kV DC power supply by David and Shanni Prutchi

Inside chasis of d.i.y. 300 kV DC high voltage power supply by David and Shanni Prutchi

As shown in the picture above, we built the low-voltage DC power supply right into the chassis.  We vary the voltage using an external variac (not shown in the pictures).  In our power supply, 12 V applied at the input of the flyback driver produces around 250 kV DC at the output of the multiplier.  We have measured up to 300 kV DC at higher input voltages, but the corona and breakdown get very scary, so we haven’t tried pushing the limit.

UPDATE 2/10/2012: Please see the following two posts for additional information on building the resonant transformer driver, as well as on winding the primary for the flyback transformer:

http://www.diyphysics.com/2012/02/10/universal-resonant-transformer-driver-high-voltage-flyback-driver/

http://www.diyphysics.com/2012/02/10/adding-your-own-primary-to-high-voltage-flyback-transformer-for-resonant-driving/

The following YouTube video shows an early version of our d.i.y. power supply being used to fly an electrostatic “lifter” that Shanni built many years ago as a grade-school science-fair project:

httpv://youtu.be/p10OUADRr2M

In our d.i.y. book “Exploring Quantum Physics Through Hands-On Projects” we show many ways in which this power supply can be used to perform advanced physics experiments.

DANGER! Please note that this is a dangerous device! It produces high voltages which can cause very painful or lethal electrical shocks. In addition, spark discharges can be produced which can ignite flammable materials or volatile atmospheres. Remember that the capacitors retain charge long after the power supply is switched off.  Thoroughly discharge them before touching the high voltage rails!

 

Please visit www.prutchi.com and www.diyPhysics.com for other cutting-edge d.i.y. projects, and remember to check out our new d.i.y. Quantum Physics book:

« Engineer’s Date Night
Universal Resonant Transformer Driver (High-Voltage Flyback Driver) »

Buy our book at Amazon.com

Navigate diyphysics.com

  • Book
    • Book Contents
    • Adopt the Textbook
    • Back Cover
    • Instructor’s Guide
    • Software
    • Book Errata
  • About Us
  • Contact Us
  • Terms of Use
  • Privacy Policy

Categories

  • Administrative
  • Book Chapters
    • Chapter 1 – Light as a Wave
    • Chapter 2 – Light as Particles
    • Chapter 3 – Atoms and Radioactvity
    • Chapter 4 – The Priciple of Quantum Physics
    • Chapter 5 – Wave-Particle Duality
    • Chapter 6 – The Uncertainty Principle
    • Chapter 7 – Schrödinger's Wave Equation
    • Chapter 8 – Entanglement
  • Experiments
    • Attenuation of Radiation
    • Bell's Inequality Test
    • Compton Scattering
    • Doppler Effect
    • e/m Measurement
    • Emission Spectrometry
    • Entanglement
    • Glow Discharge
    • Ionizing Radiation Detection
    • Maltese Cross CRT
    • Plasma Physics
    • QKD
    • Quantum Dots
    • Quantum Random Number Generation
    • Quantum Tunneling
    • Radio-Isotope Identification
    • Relativistic Time Dilation
    • Rutherford Alpha-Particle Scattering
    • Single-Electron Experiments
    • Single-Photon Experiments
    • Single-Slit Diffraction
    • Two-Slit Interference
    • β-Particle Magnetic Deflection
  • Instrumentation
    • CDV700 Pro Geiger-Müller Counter
    • Electron-Beam Tube
    • Entangled-Photon Source
    • Gunnplexer Transceiver
    • High-Voltage Power Supply
    • Lasers
    • Mach-Zehnder Interferometer
    • Magneto-Optical Trap
    • Marx Generators
    • MCA/PHA
    • Photomultipliers
    • Photon/Coincidence Counter
    • PMT/Scintillation Processor
    • Polarimetric Imaging
    • Polymeric Radiation Detector
    • Precision Clocks and Timers
      • Atomic Clock
      • GPS-Disciplined
    • Radioisotopes
    • Scintillation Detector
    • Single-Photon Counting Modules (SPCMs)
    • Single-Photon Imaging
    • Spectrometer
    • Thermal Camera
    • Ultraviolet Illuminators
    • Vacuum System
  • Medium Wave Infrared Imaging
  • Nuclear Magnetic Resonance NMR
  • Physics Humor
  • Theoretical Physics
  • Ultraviolet Imaging
  • Uncategorized

Educational Resources

  • ALPhA Advanced Laboratory Physics Association
  • American Journal of Physics
  • Circuit Cellar
  • Dr. Enrique Galvez' Correlated-Photon Experiments Guide
  • Dr. Mark Beck's Undergraduate QM Experiments
  • The Bell Jar

Blogroll

  • Dorith Prutchi's Professional Website
  • More of our projects at prutchi.com
  • My Blog on Implantable Devices
  • My Infrared-to-UV Photography Site

Pages

  • Book
    • Book Contents
    • Adopt the Textbook
    • Back Cover
    • Instructor’s Guide
    • Software
    • Book Errata
  • About Us
  • Contact Us
  • Terms of Use
  • Privacy Policy

Archives

  • November 2023
  • September 2023
  • May 2021
  • March 2021
  • July 2019
  • November 2018
  • October 2018
  • April 2018
  • March 2018
  • November 2016
  • October 2016
  • September 2016
  • July 2016
  • March 2016
  • December 2015
  • November 2015
  • October 2015
  • September 2015
  • August 2015
  • July 2015
  • February 2014
  • December 2013
  • July 2013
  • May 2013
  • April 2013
  • March 2013
  • February 2013
  • January 2013
  • December 2012
  • October 2012
  • September 2012
  • August 2012
  • June 2012
  • May 2012
  • April 2012
  • March 2012
  • February 2012
  • January 2012
  • December 2011

Categories

  • Administrative (9)
  • Book Chapters (61)
    • Chapter 1 – Light as a Wave (2)
    • Chapter 2 – Light as Particles (10)
    • Chapter 3 – Atoms and Radioactvity (27)
    • Chapter 4 – The Priciple of Quantum Physics (3)
    • Chapter 5 – Wave-Particle Duality (13)
    • Chapter 6 – The Uncertainty Principle (2)
    • Chapter 7 – Schrödinger's Wave Equation (7)
    • Chapter 8 – Entanglement (18)
  • Experiments (57)
    • Attenuation of Radiation (2)
    • Bell's Inequality Test (8)
    • Compton Scattering (8)
    • Doppler Effect (2)
    • e/m Measurement (3)
    • Emission Spectrometry (2)
    • Entanglement (12)
    • Glow Discharge (1)
    • Ionizing Radiation Detection (18)
    • Maltese Cross CRT (1)
    • Plasma Physics (1)
    • QKD (3)
    • Quantum Dots (1)
    • Quantum Random Number Generation (3)
    • Quantum Tunneling (2)
    • Radio-Isotope Identification (7)
    • Relativistic Time Dilation (1)
    • Rutherford Alpha-Particle Scattering (1)
    • Single-Electron Experiments (1)
    • Single-Photon Experiments (22)
    • Single-Slit Diffraction (1)
    • Two-Slit Interference (4)
    • β-Particle Magnetic Deflection (2)
  • Instrumentation (79)
    • CDV700 Pro Geiger-Müller Counter (7)
    • Electron-Beam Tube (4)
    • Entangled-Photon Source (6)
    • Gunnplexer Transceiver (2)
    • High-Voltage Power Supply (10)
    • Lasers (3)
    • Mach-Zehnder Interferometer (1)
    • Magneto-Optical Trap (1)
    • Marx Generators (3)
    • MCA/PHA (10)
    • Photomultipliers (15)
    • Photon/Coincidence Counter (4)
    • PMT/Scintillation Processor (9)
    • Polarimetric Imaging (4)
    • Polymeric Radiation Detector (1)
    • Precision Clocks and Timers (3)
      • Atomic Clock (2)
      • GPS-Disciplined (1)
    • Radioisotopes (1)
    • Scintillation Detector (14)
    • Single-Photon Counting Modules (SPCMs) (12)
    • Single-Photon Imaging (3)
    • Spectrometer (1)
    • Thermal Camera (1)
    • Ultraviolet Illuminators (3)
    • Vacuum System (2)
  • Medium Wave Infrared Imaging (1)
  • Nuclear Magnetic Resonance NMR (3)
  • Physics Humor (9)
  • Theoretical Physics (1)
  • Ultraviolet Imaging (1)
  • Uncategorized (28)

WordPress

  • Log in
  • WordPress
© diy Physics Blog