diy Physics Blog

  • Book
    • Book Contents
    • Adopt the Textbook
    • Back Cover
    • Instructor’s Guide
    • Software
    • Book Errata
  • About Us
  • Contact Us
  • Terms of Use
  • Privacy Policy

Category Archives: Chapter 8 – Entanglement

EG&G SPCM-AQR-13-FC Single Photon Counting Module on eBay (no relation to seller)

Posted on May 14, 2013 by David Prutchi Posted in Bell's Inequality Test, Chapter 8 - Entanglement, Single-Photon Counting Modules (SPCMs), Single-Photon Experiments

SPCM on eBay www.diyPhysics.comI HAVE NO RELATION TO SELLER – Just passing along in case someone is interested.

eBay item number 271206242864:

“The EG&G (or Perkin Elmer) SPCM-AQR is a self-contained module which detects single photons of light over the wavelength range from 400 nm to 1060 nm and sensitivity which often outperforms PMTs. The option 13-FC indicates 180 micron diameter Si APD, Dark Count < 250cps and FC connector attached.

I obtained this detector in working order five years ago and have not used it since then. The detector comes with two unknown optical fiber cables (one end: FC, the other end: bare fiber) and a supply cable to which you need to give 5V. No manual included. The US sale only.”

Fair Sampling Loophole Closed for Test of Violation of Bell’s Inequality

Posted on April 25, 2013 by David Prutchi Posted in Bell's Inequality Test, Chapter 8 - Entanglement, Single-Photon Counting Modules (SPCMs)

 

Loophole-free Bell's Inequality Violation David Prutchi PhD www.diyPhysics.com

From “Loophole-free Einstein–Podolsky–Rosen experiment via quantum steering”, New Journal of Physics, Volume 14, May 2012

A very interesting article by Bernhard Wittmann, Sven Ramelow, Fabian Steinlechner, Nathan K Langford, Nicolas Brunner, Howard M Wiseman, Rupert Ursin,and Anton Zeilinger, entitled “Loophole-free Einstein–Podolsky–Rosen experiment via quantum steering” appeared in the Nature’s New Journal of Physics, Volume 14, May 2012.

This paper describes a Bell’s Inequality Violation experiment in which the “fair sampling” loophole has been closed.  This loophole posits the possibility that classical – rather than quantum – effects could be responsible for measured correlations between entangled pairs of photons in a Bell’s Inequality Violation experiment.  The paper’s abstract reads:

“Tests of the predictions of quantum mechanics for entangled systems have provided increasing evidence against local realistic theories. However, there remains the crucial challenge of simultaneously closing all major loopholes—the locality, freedom-of-choice and detection loopholes—in a single experiment. An important sub-class of local realistic theories can be tested with the concept of ‘steering’. The term ‘steering’ was introduced by Schrödinger in 1935 for the fact that entanglement would seem to allow an experimenter to remotely steer the state of a distant system as in the Einstein–Podolsky–Rosen (EPR) argument. Einstein called this ‘spooky action at a distance’. EPR-steering has recently been rigorously formulated as a quantum information task opening it up to new experimental tests. Here, we present the first loophole-free demonstration of EPR-steering by violating three-setting quadratic steering inequality, tested with polarization-entangled photons shared between two distant laboratories. Our experiment demonstrates this effect while simultaneously closing all loopholes: both the locality loophole and a specific form of the freedom-of-choice loophole are closed by having a large separation of the parties and using fast quantum random number generators, and the fair-sampling loophole is closed by having high overall detection efficiency. Thereby, we exclude—for the first time loophole-free—an important class of local realistic theories considered by EPR. Besides its foundational importance, loophole-free steering also allows the distribution of quantum entanglement secure event in the presence of an untrusted party.”

Continue reading→

Loved the Book “How the Hippies Saved Physics” by David Kaiser

Posted on April 23, 2013 by David Prutchi Posted in Bell's Inequality Test, Chapter 8 - Entanglement, Physics Humor, QKD

How the Hippies Saved Physics www.diyPhysics.com David Prutchi PhDI just finished the book “How the Hippies Saved Physics” by David Kaiser and absolutely loved!

The book was fun and immensely educational regarding the seemingly unlikely seed of modern-day quantum information theory.  I must confess that when I first saw the book on the shelf at my local Barnes & Noble I dismissed it as yet another pseudo-scientific account of quantum physics.  However, I bought a copy after reading the following review in New Scientist:

“David Kaiser’s How the Hippies Saved Physics is a reminder of the unexpected influence a bunch of freewheeling 1970s physicists had on fundamental theories

IT’S certainly a provocative title, but for the life of me I could not recall an era to which How the Hippies Saved Physics might have applied. Things made more sense, though, on reading David Kaiser’s mention of two other books, both of which had left a big impression on me: Fritjof Capra’s The Tao of Physics and Gary Zukav’s The Dancing Wu Li Masters.

Continue reading→

Air to Ground Quantum Key Distribution Achieved

Posted on April 10, 2013 by David Prutchi Posted in Chapter 8 - Entanglement, QKD
Quantum key distribution from airplane David Prutchi PhD www.diyPhysics.com

From Nauerth et al, “Air to Ground Quantum Key Distribution”

From Phys.org:

“A team of German physicists has successfully demonstrated an ability to perform quantum key distribution (QKD) exchange between an airplane in flight and a ground station, paving the way perhaps to the same kinds of communications between satellites and ground stations which could lead to a global quantum based secure communications network. The team presented their results at the QCrypt convention this past week.

Continue reading→

Schematics for Fast Pulse Amplifier for Macroscopic Entanglement Detection

Posted on April 7, 2013 by David Prutchi Posted in Chapter 8 - Entanglement, Entanglement, Photon/Coincidence Counter, Single-Photon Counting Modules (SPCMs)

Fast pulse amplifier for macro entanglement detectionA recent paper entitled “Displacing entanglement back and forth between the micro and macro domains” discusses the experimental possibility of displacing quantum entanglement into the domain where it involves two macroscopically distinct states, i.e. two states characterized by a large enough number of photons.  Specifically, the authors describe the process by which they start with two entangled spatially separated optical modes at the single photon level and subsequently displace one of these modes up to almost a thousand photons.

With so many photons, it would be possible, at least in principle, to see entangled photon pulses with our eyes.  This would also make it possible to perform entanglement experiments with linear coarse-grain detectors (NOT single-photon detectors).

Mathieu Stephan, a high speed electronics engineer at the Swiss quantum information systems company id Quantique SA (and prolific hardware hacker) designed the very fast pulse amplifiers needed to acquire signals from avalanche photodiodes for this experiment.  He has posted a thorough description of his design on his blog: http://www.limpkin.fr.

Continue reading→

New Book by Prof. Mark Beck – Great Complement to Our diy Quantum Physics Book!

Posted on September 27, 2012 by David Prutchi Posted in Chapter 8 - Entanglement, Entangled-Photon Source, Single-Photon Counting Modules (SPCMs), Single-Photon Experiments, Uncategorized

Quantum Mechanics Theory and Experiment by Mark Beck, www.diyPhysics.comProf. Mark Beck from the Dept. of Physics at Whitman College recently published an excellent book titled “Quantum Mechanics: Theory and Experiment.”  It is written for an advanced undergraduate/graduate quantum mechanics class.  This book presents the theory in its full formalism (with thorough, high-level math), as well as describes five laboratory experiments that explore the use of entangled photons in the undergraduate lab.

Prof. Beck’s laboratory experiments use the same type of system as we describe in Chapter 8 of Exploring Quantum Physics Through Hands-On Projects, so if you are up to the math, we heartily recommend this book to continue your exploration with your entangled-photon system.

Continue reading→

Two SPCMs on eBay at $400 Each (No Connection To Seller)

Posted on May 9, 2012 by David Prutchi Posted in Chapter 8 - Entanglement, Entanglement, Single-Photon Counting Modules (SPCMs), Single-Photon Experiments

SPCMs for sale on eBayToday I found two Perkin Elmer SPCM-AQE-13-FC SPCMs for sale on eBay at $400 each.  eBay auction numbers are 280877451350 and 280877453169.  I am passing along this information in case that blog readers may be interested.  I have no connection whatsoever to seller.

Perkin Elmer C30902E SPADs on eBay for $91 (Unrelated to Authors)

Posted on April 18, 2012 by David Prutchi Posted in Chapter 8 - Entanglement, Entanglement, Single-Photon Counting Modules (SPCMs), Single-Photon Experiments

Perkin Elmer Excelitas single photon avalanche photodiodes on eBay  www.diyPhysics.comSomeone (I don’t know the seller) is selling brand new Perkin Elmer C30902E Silicon Avalanche Photodiodes on eBay.  Auction number:  200747161278.

These are NOT chilled by a thermoelectric cooler, so their internal noise may be too large for experiments with entangled photons unless you rig some sort of external Peltier element to keep them chilled.  However, if you are developing a SPCM, using $91 SPADs during debugging is a lot better than frying $1,000 TE-cooled SPADs.

Continue reading→

d.i.y. Mod for Perkin Elmer SPCM-AQR Single-Photon Detector Module to Improve Photon Timing Performance

Posted on January 31, 2012 by David Prutchi Posted in Chapter 8 - Entanglement, Entanglement, Photon/Coincidence Counter, Single-Photon Counting Modules (SPCMs), Single-Photon Experiments

Perkin-Elmer SPCM for diy quantum entanglement experiments modified to improve photon-counting timing performanceI. Rech, I. Labanca, M. Ghioni, and S. Cova of the Politecnico di Milano in Italy described an interesting modification to the Perkin Elmer SPCM-AQR Single-Photon Counting Module (SPCM) to improve its timing characteristics in:

I. Rech, I. Labanca, M. Ghioni, and S. Cova, “Modified single photon counting modules for optimal timing performance“, Rev. Sci. Instrum. 77, 033104 (2006); doi:10.1063/1.2183299 (5 pages). Continue reading→

DN1221 Thermoelectric Controller for d.i.y. Single-Photon Counter Module

Posted on January 27, 2012 by David Prutchi Posted in Chapter 8 - Entanglement, Single-Photon Counting Modules (SPCMs), Single-Photon Experiments

DN1221 thermoelectric cooler controller for diy single-photon counter moduleFigure 144 in the book shows the schematic diagram for our d.i.y. thermoelectrically cooled single-photon avalanche photodiode (SPAD).  Our design calls for a ThermOptics DN1225 TEC controller.  However, this model is not available any more.  Fortunatelly, the ThermOptics’ DN1221 subminiature Bipolar Temperature Controller for Thermoelectric Coolers (TEC) is equally suitable by adapting the pinout and adjusting component values. Continue reading→

Excelitas Technologies (Perkin-Elmer) C30902SH Single-Photon Avalanche Photodiode (SPAD) used in d.i.y. SPCM

Posted on January 25, 2012 by David Prutchi Posted in Bell's Inequality Test, Chapter 8 - Entanglement, Entanglement, Quantum Random Number Generation, Single-Photon Counting Modules (SPCMs), Single-Photon Experiments
Excelitas Technologies C30902S-DTC SPAD used in d.i.y. single-photon counting module

Image Credit: Excelitas Technologies

Figure 144 in the book shows the schematic diagram for our d.i.y. passively-quenched SPCM based on a Perkin-Elmer C30902S-DTC SPAD.

In our circuit, the SPAD is reverse-biased through a 200kΩ resistor. This value is sufficiently large that an avalanche in the SPAD will be quenched by itself within less than a nanosecond. The pulses produced by the SPAD are AC-coupled to a fast constant-level discriminator which has an output that is compatible with TTL logic circuits. Continue reading→

Type I Downconversion Beta-Barium-Borate (BBO) Crystal Array for diy Entangled Photon Source

Posted on January 23, 2012 by David Prutchi Posted in Bell's Inequality Test, Chapter 8 - Entanglement, Entangled-Photon Source, Entanglement, Single-Photon Experiments

Photop BBO crystal array for diy entangled photon sourceOur diy entangled-photon source, shown in the book’s Figure 142,  uses two BBO crystals that support type I down-conversion that are mounted according to a design by Paul Kwiat and his colleagues at the Los Alamos National Laboratory.

The nonlinear crystal in our photon entangler comprises two 5 mm x 5 mm x 0.1 mm BBO crystals mounted face-to-face at an angle of 90 degrees to each other. As shown in the book’s Figure 140, pump photons polarized at 45 degrees produce two cones of entangled down-converted photons.

Continue reading→

405 nm Pump Laser for diy Entangled Photon Source

Posted on January 23, 2012 by David Prutchi Posted in Bell's Inequality Test, Chapter 8 - Entanglement, Entangled-Photon Source, Entanglement, Quantum Random Number Generation, Single-Photon Experiments

405 nm UV pump laser used in diy entangled photon source

This is the 405 nm pump laser used in the circuit shown in the book’s Figure 141.   The laser is built from a Blu Ray disk burner laser diode.  We drive the laser diode with 160 mA to produce around 100 mW of 405-nm polarized light.  The laser diode is capable of producing 250 mW, but we prefer to drive it much more conservatively. Continue reading→

Beam Diagram for Entangled-Photon Source

Posted on January 14, 2012 by David Prutchi Posted in Chapter 8 - Entanglement, Entangled-Photon Source, Entanglement, Single-Photon Experiments

diy Entangled photon source described in the book  "Exploring Quantum Physics through Hands-On Experiments" by David Prutchi Ph.D. and Shanni R. Prutchi

This picture supplements Figure 148 in the book.  The colors should help you visualize the paths of the beams in our entangled-photon source:  Violet – 405 nm pump laser beam; Pink – 810 nm signal and idler entangled-photon beams.  A detailed schematic diagram for the entangler is available in the book’s Figure 147.  Figure 149 shows the 405 nm beamstop. Continue reading→

quTools quED Entanglement Demonstrator

Posted on January 11, 2012 by David Prutchi Posted in Bell's Inequality Test, Chapter 8 - Entanglement, Entangled-Photon Source, Entanglement, Single-Photon Experiments
quTools' quED quantum entanglement demonstrator system
Image Credit: quTools

quTools of München, Germany is the maker of the quED quantum entangled state demonstrator system to generate and analyze polarization entangled photons.  This system is a professionally-manufactured version of the type of entangled-photon generator used by many universities, and similar to the diy version described in Chapter 8 of our book (Figure 148).

quED employs a spontaneous parametric down conversion process (type I or type II; collinear or non-collinear) to generate polarization entangled photon pairs. Fiber-coupled single photon detectors in connection with polarizing filters are used to detect the photon pairs, analyze their polarizations and verify their non-classical correlations. Continue reading→

Buy our book at Amazon.com

Navigate diyphysics.com

  • Book
    • Book Contents
    • Adopt the Textbook
    • Back Cover
    • Instructor’s Guide
    • Software
    • Book Errata
  • About Us
  • Contact Us
  • Terms of Use
  • Privacy Policy

Categories

  • Administrative
  • Book Chapters
    • Chapter 1 – Light as a Wave
    • Chapter 2 – Light as Particles
    • Chapter 3 – Atoms and Radioactvity
    • Chapter 4 – The Priciple of Quantum Physics
    • Chapter 5 – Wave-Particle Duality
    • Chapter 6 – The Uncertainty Principle
    • Chapter 7 – Schrödinger's Wave Equation
    • Chapter 8 – Entanglement
  • Experiments
    • Attenuation of Radiation
    • Bell's Inequality Test
    • Compton Scattering
    • Doppler Effect
    • e/m Measurement
    • Emission Spectrometry
    • Entanglement
    • Glow Discharge
    • Ionizing Radiation Detection
    • Maltese Cross CRT
    • Plasma Physics
    • QKD
    • Quantum Dots
    • Quantum Random Number Generation
    • Quantum Tunneling
    • Radio-Isotope Identification
    • Relativistic Time Dilation
    • Rutherford Alpha-Particle Scattering
    • Single-Electron Experiments
    • Single-Photon Experiments
    • Single-Slit Diffraction
    • Two-Slit Interference
    • β-Particle Magnetic Deflection
  • Instrumentation
    • CDV700 Pro Geiger-Müller Counter
    • Electron-Beam Tube
    • Entangled-Photon Source
    • Gunnplexer Transceiver
    • High-Voltage Power Supply
    • Lasers
    • Mach-Zehnder Interferometer
    • Magneto-Optical Trap
    • Marx Generators
    • MCA/PHA
    • Photomultipliers
    • Photon/Coincidence Counter
    • PMT/Scintillation Processor
    • Polarimetric Imaging
    • Polymeric Radiation Detector
    • Precision Clocks and Timers
      • Atomic Clock
      • GPS-Disciplined
    • Radioisotopes
    • Scintillation Detector
    • Single-Photon Counting Modules (SPCMs)
    • Single-Photon Imaging
    • Spectrometer
    • Thermal Camera
    • Ultraviolet Illuminators
    • Vacuum System
  • Medium Wave Infrared Imaging
  • Nuclear Magnetic Resonance NMR
  • Physics Humor
  • Theoretical Physics
  • Ultraviolet Imaging
  • Uncategorized

Educational Resources

  • ALPhA Advanced Laboratory Physics Association
  • American Journal of Physics
  • Circuit Cellar
  • Dr. Enrique Galvez' Correlated-Photon Experiments Guide
  • Dr. Mark Beck's Undergraduate QM Experiments
  • The Bell Jar

Blogroll

  • Dorith Prutchi's Professional Website
  • More of our projects at prutchi.com
  • My Blog on Implantable Devices
  • My Infrared-to-UV Photography Site
  • 1
  • 2
  • Next

Pages

  • Book
    • Book Contents
    • Adopt the Textbook
    • Back Cover
    • Instructor’s Guide
    • Software
    • Book Errata
  • About Us
  • Contact Us
  • Terms of Use
  • Privacy Policy

Archives

  • November 2023
  • September 2023
  • May 2021
  • March 2021
  • July 2019
  • November 2018
  • October 2018
  • April 2018
  • March 2018
  • November 2016
  • October 2016
  • September 2016
  • July 2016
  • March 2016
  • December 2015
  • November 2015
  • October 2015
  • September 2015
  • August 2015
  • July 2015
  • February 2014
  • December 2013
  • July 2013
  • May 2013
  • April 2013
  • March 2013
  • February 2013
  • January 2013
  • December 2012
  • October 2012
  • September 2012
  • August 2012
  • June 2012
  • May 2012
  • April 2012
  • March 2012
  • February 2012
  • January 2012
  • December 2011

Categories

  • Administrative (9)
  • Book Chapters (61)
    • Chapter 1 – Light as a Wave (2)
    • Chapter 2 – Light as Particles (10)
    • Chapter 3 – Atoms and Radioactvity (27)
    • Chapter 4 – The Priciple of Quantum Physics (3)
    • Chapter 5 – Wave-Particle Duality (13)
    • Chapter 6 – The Uncertainty Principle (2)
    • Chapter 7 – Schrödinger's Wave Equation (7)
    • Chapter 8 – Entanglement (18)
  • Experiments (57)
    • Attenuation of Radiation (2)
    • Bell's Inequality Test (8)
    • Compton Scattering (8)
    • Doppler Effect (2)
    • e/m Measurement (3)
    • Emission Spectrometry (2)
    • Entanglement (12)
    • Glow Discharge (1)
    • Ionizing Radiation Detection (18)
    • Maltese Cross CRT (1)
    • Plasma Physics (1)
    • QKD (3)
    • Quantum Dots (1)
    • Quantum Random Number Generation (3)
    • Quantum Tunneling (2)
    • Radio-Isotope Identification (7)
    • Relativistic Time Dilation (1)
    • Rutherford Alpha-Particle Scattering (1)
    • Single-Electron Experiments (1)
    • Single-Photon Experiments (22)
    • Single-Slit Diffraction (1)
    • Two-Slit Interference (4)
    • β-Particle Magnetic Deflection (2)
  • Instrumentation (79)
    • CDV700 Pro Geiger-Müller Counter (7)
    • Electron-Beam Tube (4)
    • Entangled-Photon Source (6)
    • Gunnplexer Transceiver (2)
    • High-Voltage Power Supply (10)
    • Lasers (3)
    • Mach-Zehnder Interferometer (1)
    • Magneto-Optical Trap (1)
    • Marx Generators (3)
    • MCA/PHA (10)
    • Photomultipliers (15)
    • Photon/Coincidence Counter (4)
    • PMT/Scintillation Processor (9)
    • Polarimetric Imaging (4)
    • Polymeric Radiation Detector (1)
    • Precision Clocks and Timers (3)
      • Atomic Clock (2)
      • GPS-Disciplined (1)
    • Radioisotopes (1)
    • Scintillation Detector (14)
    • Single-Photon Counting Modules (SPCMs) (12)
    • Single-Photon Imaging (3)
    • Spectrometer (1)
    • Thermal Camera (1)
    • Ultraviolet Illuminators (3)
    • Vacuum System (2)
  • Medium Wave Infrared Imaging (1)
  • Nuclear Magnetic Resonance NMR (3)
  • Physics Humor (9)
  • Theoretical Physics (1)
  • Ultraviolet Imaging (1)
  • Uncategorized (28)

WordPress

  • Log in
  • WordPress
© diy Physics Blog