diy Physics Blog

  • Book
    • Book Contents
    • Adopt the Textbook
    • Back Cover
    • Instructor’s Guide
    • Software
    • Book Errata
  • About Us
  • Contact Us
  • Terms of Use
  • Privacy Policy

Category Archives: Chapter 5 – Wave-Particle Duality

Using Surplus Photonis XP2422/SN PMTs in Scintillation Probes

Posted on April 8, 2013 by David Prutchi Posted in Chapter 2 - Light as Particles, Chapter 5 - Wave-Particle Duality, Ionizing Radiation Detection, MCA/PHA, Photomultipliers, Radio-Isotope Identification, Scintillation Detector

XP2422/SN PMT Photomultiplier David Prutchi PhD

We prepared a short note on how to build a dynode voltage divider network for inexpensive surplus XP2422/SN photomultiplier tubes.  The XP2422/SN PMT is especially suited for gamma-ray spectral analysis when coupled to a NaI(Tl) scintillation crystal because of its high pulse-height resolution (PHR).  The XP2422/SN is available from Sphere Research in Canada.

Continue reading→

In Memoriam – Dr. Akira Tonomura (1942-2012)

Posted on April 2, 2013 by David Prutchi Posted in Chapter 5 - Wave-Particle Duality, Single-Electron Experiments

photo_tonomuraWe recently learned the sad news that Dr. Akira Tonomura – a truly great experimentalist – passed away on May 2, 2012 during the course of treatment on pancreatic cancer.

We have been great admirers of Dr. Tonomura.  Our blog’s banner is a cartoon representation of an experimental setup developed by Dr. Tonomura, through which in 1986 he showed single-electron buildups of electron wave interference fringe patterns. This experiment clearly revealed the dual nature of electrons and was described by Physics World magazine as the world’s most beautiful physics experiment, ranking above the historical experiments of Galileo Galilei and Robert Millikan.

Continue reading→

Using the $79 SainSmart DSO201 Pocket Oscilloscope and GammaGrapher with the PMT/Scintillation Probe

Posted on September 21, 2012 by David Prutchi Posted in Chapter 2 - Light as Particles, Chapter 3 - Atoms and Radioactvity, Chapter 5 - Wave-Particle Duality, Compton Scattering, MCA/PHA, Photomultipliers, PMT/Scintillation Processor, Scintillation Detector, Single-Photon Experiments

Connects directly to PMT probe shown in the book’s Figure 30 with no need for PMT amplifier!

 

Freeware Gamma Grapher MCA with diy PMT Scintillation Probe by David and Shanni Prutchi diyPhysics.com

The nice guys at the Yahoo GammaSpectrometry Group developed multichannel analyzer software for the $79 SainSmart DSO201 Pocket-Sized Digital Oscilloscope.  The upload of the MCA software to the oscilloscope is really easy (via USB), and it allows the PMT probe shown in the book’s Figure 30 to be connected directly to the oscilloscope’s input with no need for a PMT amplifier!

Continue reading→

Connecting to Surplus Scionix Miniature Scintillation Probes

Posted on February 20, 2012 by David Prutchi Posted in Chapter 3 - Atoms and Radioactvity, Chapter 5 - Wave-Particle Duality, Ionizing Radiation Detection, Photomultipliers, Radio-Isotope Identification, Scintillation Detector

Scionix miniature photomultiplier scintillation probe David Prutchi PhD www.diyPhysics.com

Lemo connector on Scionix miniature photomultiplier scintillation probe David Prutchi PhD www.diyPhysics.com

Scionix in The Netherlands has taken advantage of the recent development of miniature mesh-type dynode photomultiplier tubes to construct small-diameter scintillation probes.  Scionix’s miniature probes incorporate one of those PMTs, a NaI(Tl) scintillation crystal, and a built-in dynode voltage divider.  Connection to the probe is made through a miniature high-voltage locking coaxial connector.  Finding a mating connector is the main problem faced by enthusiasts who find these probes in the surplus market. Continue reading→

Simple d.i.y. Low-Pass Filter for Interfacing PMT Amplifier to PC Sound Card (Used with Free “Pulse Recorder and Analyser” Software MCA)

Posted on February 20, 2012 by David Prutchi Posted in Chapter 5 - Wave-Particle Duality, MCA/PHA, PMT/Scintillation Processor, Radio-Isotope Identification

diy low pass filter interface between photomultiplier scintillation probe amplifier and PRA by David Prutchi Ph.D. www.diyPhysics.comFigure 34 in the book shows the schematic diagram for our photomultiplier tube (PMT) signal processing circuit has an analog output that is suitable for use with a sound-card-based multichannel pulse-height analyzer (MCA).  However, if you already have a commercial scintillation processor that you would like to use with PRA, then you will somehow need to extend the typically narrow output pulses (e.g. 1 to 10 microseconds) so that they can be acquired through the sound card. Continue reading→

Open-Source Handheld Gamma Spectrometer on Yahoo Group GammaSpectrometry

Posted on February 1, 2012 by David Prutchi Posted in Chapter 3 - Atoms and Radioactvity, Chapter 5 - Wave-Particle Duality, Compton Scattering, Ionizing Radiation Detection, MCA/PHA, Radio-Isotope Identification, Scintillation Detector

GammaGrapher Open-Source MCA developed by members of Yahoo Group GCE

An amateur-use open-source gamma spectrum analyzer is being developed by members of the GeigerCounterEnthusiast (GCE) Yahoo Group.  This multichannel analyzer (MCA) is based on the STM32F103VBT6 microcontroller.  It displays spectra on a color LCD.

To access the design files (and hopefully to participate in the development) you will need to join the GammaSpectrometry Yahoo Group (free membership).  Join through: http://groups.yahoo.com/ Continue reading→

Matlab Video Frame Integration Program Using VCAPG2 for Single-Photon Double-Slit Interference Experiment

Posted on January 30, 2012 by David Prutchi Posted in Chapter 5 - Wave-Particle Duality, Single-Photon Experiments, Single-Photon Imaging, Two-Slit Interference

Frame integration of single-photon double-slit interference experiment

In Chapter 5 of the book we list a short Matlab® program to integrate successive video frames from our diy intensified camera to image double-slit interference patterns obtained by shooting a single photon at a time.

The program listed in the book uses Vision for Matlab (VFM).  However, this utility is not compatible with all versions of Windows and Matlab.  An alternative is VCAPG2 by Kazuyuki Kobayashi available at http://www.ikko.k.hosei.ac.jp/~matlab/matkatuyo/vcapg2.htm  (Also available from our SOFTWARE page). Continue reading→

diy PMT Pulse Processor Suitable For Use With “Pulse Recorder and Analyser (PRA)” MCA

Posted on January 20, 2012 by David Prutchi Posted in Chapter 2 - Light as Particles, Chapter 5 - Wave-Particle Duality, Compton Scattering, Ionizing Radiation Detection, MCA/PHA, Photomultipliers, PMT/Scintillation Processor, Scintillation Detector, Single-Photon Experiments 2 Comments

diy Photomultiplier Processor

Figure 34 in the book shows the schematic diagram for the photomultiplier tube (PMT) signal processing circuit that amplifies the narrow pulses detected by the PMT probe.  The discriminator stage removes small pulses produced by thermal noise in the tube.  A pulse stretcher outputs pulses that can be heard on a speaker.  In addition, the analog output is suitable for use with a sound-card-based multichannel pulse-height analyzer (MCA). Continue reading→

diy Low-Cost, Regulated, Variable, Low-Ripple High-Voltage (2kV) Photomultiplier Tube Power Supply

Posted on January 20, 2012 by David Prutchi Posted in Chapter 2 - Light as Particles, Chapter 3 - Atoms and Radioactvity, Chapter 5 - Wave-Particle Duality, Compton Scattering, High-Voltage Power Supply, Ionizing Radiation Detection, MCA/PHA, Photomultipliers, Scintillation Detector, Single-Photon Experiments

diy Low-cost, regulated, variable-output photomultiplier power supply

The book’s Figure 32 shows the schematic diagram for a low-cost, variable-voltage PMT power supply based on a BXA-12579 inverter module that is originally designed as a power supply for cold-cathode fluorescent lamps.  This under-$20 module produces 1,500VAC at around 30kHz from a 12VDC input.

We are posting this picture to help you build your own power supply.  It shows the BXA-12579 that has been modified as described in the book.   The op-amp to the right of the CCFL module is used to control the voltage supplied to the module.  The high-voltage AC output of the inverter is rectified and doubled and filtered by the diodes and capacitors at the left of the CCFL module. Continue reading→

RCA 6655A PMT Data Sheet

Posted on January 14, 2012 by David Prutchi Posted in Chapter 2 - Light as Particles, Chapter 3 - Atoms and Radioactvity, Chapter 5 - Wave-Particle Duality, Chapter 7 - Schrödinger's Wave Equation, Compton Scattering, Ionizing Radiation Detection, Photomultipliers, Scintillation Detector

RCA 6655A photomultiplier tube

This is the datasheet for the RCA 6655A PMT used in the probe shown in the book’s Figure 30: RCA_6655A_Datasheet

This is the datasheet for Hamamatsu’s replacement of the RCA 6655A PMT: Hamamatsu replacement for RCA 6655A R2154-02

Schematic diagrams for the probe are in Figure 29.

Assembly View of diy Variable-Output, High-Performance PMT High-Voltage Power Supply

Posted on January 14, 2012 by David Prutchi Posted in Chapter 2 - Light as Particles, Chapter 3 - Atoms and Radioactvity, Chapter 5 - Wave-Particle Duality, Chapter 7 - Schrödinger's Wave Equation, Compton Scattering, High-Voltage Power Supply, Ionizing Radiation Detection, MCA/PHA, Photomultipliers, Single-Photon Experiments

Variable-output, low-ripple, high-stability, high-voltage power supply described in pages 38-40 of "Exploring Quantum Physics Through Hands-On Projects."

We are posting this picture to help you construct the variable-output, low-ripple, high-stability, high-voltage power supply described in pages 38-40 of “Exploring Quantum Physics Through Hands-On Projects.”  The schematic diagrams for this power supply are in the book’s Figure 31.  Output voltage (up to 2 kV) and current (up to 1 mA) are monitored via two LCD panel meters. Continue reading→

Compton Scattering Experiment Using Spectrum Techniques’ Equipment

Posted on January 13, 2012 by David Prutchi Posted in Chapter 5 - Wave-Particle Duality, Compton Scattering, Ionizing Radiation Detection, MCA/PHA, Scintillation Detector

Observing Compton Scattering Using the Spectrum Techniques UCS-20 MCA

Spectrum Techniques of Oak Ridge, TN – a top supplier of Exempt Quantity radioisotope sources and nuclear measurement instrumentation – released today our tutorial:

“Experiment Note: Exploring Compton Scattering Using the Spectrum Techniques Universal Computer Spectrometer” Continue reading→

MX-10160 Gen III Image Intensifier Tube

Posted on January 4, 2012 by David Prutchi Posted in Chapter 5 - Wave-Particle Duality, Chapter 7 - Schrödinger's Wave Equation, Mach-Zehnder Interferometer, Single-Photon Experiments, Single-Photon Imaging, Two-Slit Interference

MX-10160 Gen III intensifier tube used in the helmet-mounted AN/AVS-6 “ANVIS” aviation night vision imaging system

Gen III image intensifier tube used in diy single-photon camera

This is the surplus Gen III image intensifier tube (an MX-10160 Gen III intensifier tube used in the helmet-mounted AN/AVS-6 “ANVIS” aviation night vision imaging system, which we purchased on eBay®) that we used to build our setup to image interference patterns from our single-photon two-slit setup (book‘s Figure 93).  The tube is supplied by 3VDC from two AA cells.  We used the same camera to record interference patterns from a single-photon Mach-Zehnder interferometry setup (book‘s Figure 132). Continue reading→

Buy our book at Amazon.com

Navigate diyphysics.com

  • Book
    • Book Contents
    • Adopt the Textbook
    • Back Cover
    • Instructor’s Guide
    • Software
    • Book Errata
  • About Us
  • Contact Us
  • Terms of Use
  • Privacy Policy

Categories

  • Administrative
  • Book Chapters
    • Chapter 1 – Light as a Wave
    • Chapter 2 – Light as Particles
    • Chapter 3 – Atoms and Radioactvity
    • Chapter 4 – The Priciple of Quantum Physics
    • Chapter 5 – Wave-Particle Duality
    • Chapter 6 – The Uncertainty Principle
    • Chapter 7 – Schrödinger's Wave Equation
    • Chapter 8 – Entanglement
  • Experiments
    • Attenuation of Radiation
    • Bell's Inequality Test
    • Compton Scattering
    • Doppler Effect
    • e/m Measurement
    • Emission Spectrometry
    • Entanglement
    • Glow Discharge
    • Ionizing Radiation Detection
    • Maltese Cross CRT
    • Plasma Physics
    • QKD
    • Quantum Dots
    • Quantum Random Number Generation
    • Quantum Tunneling
    • Radio-Isotope Identification
    • Relativistic Time Dilation
    • Rutherford Alpha-Particle Scattering
    • Single-Electron Experiments
    • Single-Photon Experiments
    • Single-Slit Diffraction
    • Two-Slit Interference
    • β-Particle Magnetic Deflection
  • Instrumentation
    • CDV700 Pro Geiger-Müller Counter
    • Electron-Beam Tube
    • Entangled-Photon Source
    • Gunnplexer Transceiver
    • High-Voltage Power Supply
    • Lasers
    • Mach-Zehnder Interferometer
    • Magneto-Optical Trap
    • Marx Generators
    • MCA/PHA
    • Photomultipliers
    • Photon/Coincidence Counter
    • PMT/Scintillation Processor
    • Polarimetric Imaging
    • Polymeric Radiation Detector
    • Precision Clocks and Timers
      • Atomic Clock
      • GPS-Disciplined
    • Radioisotopes
    • Scintillation Detector
    • Single-Photon Counting Modules (SPCMs)
    • Single-Photon Imaging
    • Spectrometer
    • Thermal Camera
    • Ultraviolet Illuminators
    • Vacuum System
  • Medium Wave Infrared Imaging
  • Nuclear Magnetic Resonance NMR
  • Physics Humor
  • Theoretical Physics
  • Ultraviolet Imaging
  • Uncategorized

Educational Resources

  • ALPhA Advanced Laboratory Physics Association
  • American Journal of Physics
  • Circuit Cellar
  • Dr. Enrique Galvez' Correlated-Photon Experiments Guide
  • Dr. Mark Beck's Undergraduate QM Experiments
  • The Bell Jar

Blogroll

  • Dorith Prutchi's Professional Website
  • More of our projects at prutchi.com
  • My Blog on Implantable Devices
  • My Infrared-to-UV Photography Site

Pages

  • Book
    • Book Contents
    • Adopt the Textbook
    • Back Cover
    • Instructor’s Guide
    • Software
    • Book Errata
  • About Us
  • Contact Us
  • Terms of Use
  • Privacy Policy

Archives

  • November 2023
  • September 2023
  • May 2021
  • March 2021
  • July 2019
  • November 2018
  • October 2018
  • April 2018
  • March 2018
  • November 2016
  • October 2016
  • September 2016
  • July 2016
  • March 2016
  • December 2015
  • November 2015
  • October 2015
  • September 2015
  • August 2015
  • July 2015
  • February 2014
  • December 2013
  • July 2013
  • May 2013
  • April 2013
  • March 2013
  • February 2013
  • January 2013
  • December 2012
  • October 2012
  • September 2012
  • August 2012
  • June 2012
  • May 2012
  • April 2012
  • March 2012
  • February 2012
  • January 2012
  • December 2011

Categories

  • Administrative (9)
  • Book Chapters (61)
    • Chapter 1 – Light as a Wave (2)
    • Chapter 2 – Light as Particles (10)
    • Chapter 3 – Atoms and Radioactvity (27)
    • Chapter 4 – The Priciple of Quantum Physics (3)
    • Chapter 5 – Wave-Particle Duality (13)
    • Chapter 6 – The Uncertainty Principle (2)
    • Chapter 7 – Schrödinger's Wave Equation (7)
    • Chapter 8 – Entanglement (18)
  • Experiments (57)
    • Attenuation of Radiation (2)
    • Bell's Inequality Test (8)
    • Compton Scattering (8)
    • Doppler Effect (2)
    • e/m Measurement (3)
    • Emission Spectrometry (2)
    • Entanglement (12)
    • Glow Discharge (1)
    • Ionizing Radiation Detection (18)
    • Maltese Cross CRT (1)
    • Plasma Physics (1)
    • QKD (3)
    • Quantum Dots (1)
    • Quantum Random Number Generation (3)
    • Quantum Tunneling (2)
    • Radio-Isotope Identification (7)
    • Relativistic Time Dilation (1)
    • Rutherford Alpha-Particle Scattering (1)
    • Single-Electron Experiments (1)
    • Single-Photon Experiments (22)
    • Single-Slit Diffraction (1)
    • Two-Slit Interference (4)
    • β-Particle Magnetic Deflection (2)
  • Instrumentation (79)
    • CDV700 Pro Geiger-Müller Counter (7)
    • Electron-Beam Tube (4)
    • Entangled-Photon Source (6)
    • Gunnplexer Transceiver (2)
    • High-Voltage Power Supply (10)
    • Lasers (3)
    • Mach-Zehnder Interferometer (1)
    • Magneto-Optical Trap (1)
    • Marx Generators (3)
    • MCA/PHA (10)
    • Photomultipliers (15)
    • Photon/Coincidence Counter (4)
    • PMT/Scintillation Processor (9)
    • Polarimetric Imaging (4)
    • Polymeric Radiation Detector (1)
    • Precision Clocks and Timers (3)
      • Atomic Clock (2)
      • GPS-Disciplined (1)
    • Radioisotopes (1)
    • Scintillation Detector (14)
    • Single-Photon Counting Modules (SPCMs) (12)
    • Single-Photon Imaging (3)
    • Spectrometer (1)
    • Thermal Camera (1)
    • Ultraviolet Illuminators (3)
    • Vacuum System (2)
  • Medium Wave Infrared Imaging (1)
  • Nuclear Magnetic Resonance NMR (3)
  • Physics Humor (9)
  • Theoretical Physics (1)
  • Ultraviolet Imaging (1)
  • Uncategorized (28)

WordPress

  • Log in
  • WordPress
© diy Physics Blog