diy Physics Blog

  • Book
    • Book Contents
    • Adopt the Textbook
    • Back Cover
    • Instructor’s Guide
    • Software
    • Book Errata
  • About Us
  • Contact Us
  • Terms of Use
  • Privacy Policy

Converting a 1980s Video Camera into a Real-Time Polarimetric Imager

Posted on April 15, 2018 by David Prutchi Posted in Polarimetric Imaging

Real-time polarimetric imaging camera by David Prutchi Ph.D.

Three years ago I developed the DOLPi polarimetric cameras  based on the Raspberry Pi. One used an electro-optical polarization analyzer, while the other used discrete polarization filters mounted on a filter wheel. The only issue with their performance was lack of speed.  I mentioned back then that high-speed polarization imagers have been built using multiple sensors, each with its dedicated, fixed-state polarization analyzer.  I finally got around to converting a 1980s-era three-tube camera into a real-time polarimetric imager.  The full whitepaper with detailed step-by-step instructions is available for download in pdf format at:  Converting_the_JVC_KY-1900_into_a_Real-Time_Polarimetric_Imager_-_Prutchi_2018

The camera used as the basis for this conversion is widely available on eBay® for around $50. The KY-1900 was a professional-grade camera. It was one of the few models to be produced with a plastic orange body, making it very distinctive, and a mark of high-end professionalism for camera crews. Back in 1982, this camera retailed for around $9,000.

Real-time polarimetric imaging camera by David Prutchi Ph.D.

The KY-1900 is a three-tube type color video camera which employs separate pickup tubes (Saticons) for red, green, and blue channels. Incident light through the lens is split into three colors by dichroic beamsplitters. JVC added RGB color filters inside the second relay lenses to improve color reproducibility.  The modification to turn the JVC KY-1900 camera into a real-time polarimetric imager consists of exchanging the original dichroic beamsplitters by wideband beamsplitters, eliminating the color trimming filters, and adding polarization analyzers.

Real-time polarimetric imaging camera by David Prutchi Ph.D.

 

The project’s whitepaper goes into the full nitty-gritty of how to disassemble the camera and make the conversion.

The following figure shows results with a sample target made with pieces of polarizing plastic at angles between 0° and 180° along with a colorbar.   The target as captured from the modified JVC KY-1900 camera shows the colorbar and other non-polarized elements of the picture in gray-scale, while the pieces of polarizer film are brightly colored, encoding their angle of polarization in NTSC’s RGB space:

Real-time polarimetric imaging camera by David Prutchi Ph.D.

 

This camera suffers of poor spatial and polarization resolution that are the result of using a 1980s technology and the NTSC (colloquially known as “Never the Same Color”) standard.  However, what this polarimetric camera lacks in resolution, it makes up in speed. The NTSC standard ran at 29.97 frames/s (nominally “30 frames/s”), which is dramatically faster than a frame every few seconds for the DoLPi-Mech, or even 8 frames/s for the DoLPi-EO in 640×480 pixel low-resolution mode. Moreover, and unlike the DoLPi cameras, the three polarization images used to create the RGB-encoded image are acquired simultaneously by the three Saticon tubes, so moving objects do not produce false polarization ghosts.

Project Whitepaper:  Converting_the_JVC_KY-1900_into_a_Real-Time_Polarimetric_Imager_-_Prutchi_2018

For more interesting experiments on physics and photography of the unseen world, please look through my books (click here for my books on Amazon.com):

« Rebuild of my diy Image Intensifier System for QP Experiments
Teaser on upcoming writeup on DIY Pressurized-Vessel MegaVolt-Class Marx Generator »

Buy our book at Amazon.com

Navigate diyphysics.com

  • Book
    • Book Contents
    • Adopt the Textbook
    • Back Cover
    • Instructor’s Guide
    • Software
    • Book Errata
  • About Us
  • Contact Us
  • Terms of Use
  • Privacy Policy

Categories

  • Administrative
  • Book Chapters
    • Chapter 1 – Light as a Wave
    • Chapter 2 – Light as Particles
    • Chapter 3 – Atoms and Radioactvity
    • Chapter 4 – The Priciple of Quantum Physics
    • Chapter 5 – Wave-Particle Duality
    • Chapter 6 – The Uncertainty Principle
    • Chapter 7 – Schrödinger's Wave Equation
    • Chapter 8 – Entanglement
  • Experiments
    • Attenuation of Radiation
    • Bell's Inequality Test
    • Compton Scattering
    • Doppler Effect
    • e/m Measurement
    • Emission Spectrometry
    • Entanglement
    • Glow Discharge
    • Ionizing Radiation Detection
    • Maltese Cross CRT
    • Plasma Physics
    • QKD
    • Quantum Dots
    • Quantum Random Number Generation
    • Quantum Tunneling
    • Radio-Isotope Identification
    • Relativistic Time Dilation
    • Rutherford Alpha-Particle Scattering
    • Single-Electron Experiments
    • Single-Photon Experiments
    • Single-Slit Diffraction
    • Two-Slit Interference
    • β-Particle Magnetic Deflection
  • Instrumentation
    • CDV700 Pro Geiger-Müller Counter
    • Electron-Beam Tube
    • Entangled-Photon Source
    • Gunnplexer Transceiver
    • High-Voltage Power Supply
    • Lasers
    • Mach-Zehnder Interferometer
    • Magneto-Optical Trap
    • Marx Generators
    • MCA/PHA
    • Photomultipliers
    • Photon/Coincidence Counter
    • PMT/Scintillation Processor
    • Polarimetric Imaging
    • Polymeric Radiation Detector
    • Precision Clocks and Timers
      • Atomic Clock
      • GPS-Disciplined
    • Radioisotopes
    • Scintillation Detector
    • Single-Photon Counting Modules (SPCMs)
    • Single-Photon Imaging
    • Spectrometer
    • Thermal Camera
    • Ultraviolet Illuminators
    • Vacuum System
  • Medium Wave Infrared Imaging
  • Nuclear Magnetic Resonance NMR
  • Physics Humor
  • Theoretical Physics
  • Ultraviolet Imaging
  • Uncategorized

Educational Resources

  • ALPhA Advanced Laboratory Physics Association
  • American Journal of Physics
  • Circuit Cellar
  • Dr. Enrique Galvez' Correlated-Photon Experiments Guide
  • Dr. Mark Beck's Undergraduate QM Experiments
  • The Bell Jar

Blogroll

  • Dorith Prutchi's Professional Website
  • More of our projects at prutchi.com
  • My Blog on Implantable Devices
  • My Infrared-to-UV Photography Site

Pages

  • Book
    • Book Contents
    • Adopt the Textbook
    • Back Cover
    • Instructor’s Guide
    • Software
    • Book Errata
  • About Us
  • Contact Us
  • Terms of Use
  • Privacy Policy

Archives

  • November 2023
  • September 2023
  • May 2021
  • March 2021
  • July 2019
  • November 2018
  • October 2018
  • April 2018
  • March 2018
  • November 2016
  • October 2016
  • September 2016
  • July 2016
  • March 2016
  • December 2015
  • November 2015
  • October 2015
  • September 2015
  • August 2015
  • July 2015
  • February 2014
  • December 2013
  • July 2013
  • May 2013
  • April 2013
  • March 2013
  • February 2013
  • January 2013
  • December 2012
  • October 2012
  • September 2012
  • August 2012
  • June 2012
  • May 2012
  • April 2012
  • March 2012
  • February 2012
  • January 2012
  • December 2011

Categories

  • Administrative (9)
  • Book Chapters (61)
    • Chapter 1 – Light as a Wave (2)
    • Chapter 2 – Light as Particles (10)
    • Chapter 3 – Atoms and Radioactvity (27)
    • Chapter 4 – The Priciple of Quantum Physics (3)
    • Chapter 5 – Wave-Particle Duality (13)
    • Chapter 6 – The Uncertainty Principle (2)
    • Chapter 7 – Schrödinger's Wave Equation (7)
    • Chapter 8 – Entanglement (18)
  • Experiments (57)
    • Attenuation of Radiation (2)
    • Bell's Inequality Test (8)
    • Compton Scattering (8)
    • Doppler Effect (2)
    • e/m Measurement (3)
    • Emission Spectrometry (2)
    • Entanglement (12)
    • Glow Discharge (1)
    • Ionizing Radiation Detection (18)
    • Maltese Cross CRT (1)
    • Plasma Physics (1)
    • QKD (3)
    • Quantum Dots (1)
    • Quantum Random Number Generation (3)
    • Quantum Tunneling (2)
    • Radio-Isotope Identification (7)
    • Relativistic Time Dilation (1)
    • Rutherford Alpha-Particle Scattering (1)
    • Single-Electron Experiments (1)
    • Single-Photon Experiments (22)
    • Single-Slit Diffraction (1)
    • Two-Slit Interference (4)
    • β-Particle Magnetic Deflection (2)
  • Instrumentation (79)
    • CDV700 Pro Geiger-Müller Counter (7)
    • Electron-Beam Tube (4)
    • Entangled-Photon Source (6)
    • Gunnplexer Transceiver (2)
    • High-Voltage Power Supply (10)
    • Lasers (3)
    • Mach-Zehnder Interferometer (1)
    • Magneto-Optical Trap (1)
    • Marx Generators (3)
    • MCA/PHA (10)
    • Photomultipliers (15)
    • Photon/Coincidence Counter (4)
    • PMT/Scintillation Processor (9)
    • Polarimetric Imaging (4)
    • Polymeric Radiation Detector (1)
    • Precision Clocks and Timers (3)
      • Atomic Clock (2)
      • GPS-Disciplined (1)
    • Radioisotopes (1)
    • Scintillation Detector (14)
    • Single-Photon Counting Modules (SPCMs) (12)
    • Single-Photon Imaging (3)
    • Spectrometer (1)
    • Thermal Camera (1)
    • Ultraviolet Illuminators (3)
    • Vacuum System (2)
  • Medium Wave Infrared Imaging (1)
  • Nuclear Magnetic Resonance NMR (3)
  • Physics Humor (9)
  • Theoretical Physics (1)
  • Ultraviolet Imaging (1)
  • Uncategorized (28)

WordPress

  • Log in
  • WordPress
© diy Physics Blog